Answer:
The test statistic
[tex]Z = \frac{x^{-} _{1}-x^{-} _{2} }{\sqrt{\frac{'σ^2_{1} }{n_{1} } +\frac{'σ^2_{2} '}{n_{2} } } }[/tex]
Step-by-step explanation:
Explanation:-
Let x₁⁻ be the mean of the sample of size n₁ from a population mean μ₁ and standard deviation 'σ₁
Let x₂⁻ be the mean of the sample of size n₂ from a population mean μ₂ and standard deviation 'σ₂'
Null hypothesis : H0:μ₁ = μ₂
Alternative hypothesis : H1:μ₁ ≠μ₂
To test whether there is any significant difference between x₁⁻ and x₂⁻ we have use test statistic
[tex]Z = \frac{x^{-} _{1}-x^{-} _{2} }{\sqrt{\frac{'σ^2_{1} }{n_{1} } +\frac{'σ^2_{2} '}{n_{2} } } }[/tex]
Here