Respuesta :
Answer:
the velocity of the gold nuclei [tex]v'_2 = 5.34 *10^5 \ m/s[/tex]
the angle of the velocity of gold nuclei = 29.64° clockwise (i.e down the horizontal)
the final kinetic energy of helium nucleus is [tex]7.52 *10^{-13} \ \ J[/tex]
Explanation:
The formula for kinetic Energy (K.E) is:
[tex]K.E = \frac{1}{2}m_1v_1^2[/tex]
[tex]v_1 = (\frac{2K.E}{m_1})^{1/2}[/tex]
where;
[tex]m_1[/tex] = mass of the helium
[tex]v_1[/tex] = velocity of helium
replacing [tex]8.00*10^{-13} \ J \ for \ K.E[/tex] and [tex]m \ with \ 6.68*10^{-27} \ kg[/tex]; we have :
[tex]v_1 = (\frac{2*8.00*10^{-13 \ }J}{6.68*10^{-27} kg})^{1/2}[/tex]
[tex]v_1 = 1.548*10^7 \ m/s[/tex]
Applying conservation of momentum along x- axis since the collision is elastic
[tex]m_1v_1 =m_1v'_1cos \theta _1 + m_2v_2' cos \theta_2[/tex] ------ equation (1)
where
[tex]m_1 \ and \ m_2[/tex] = mass of helium and gold respectively
[tex]v_1[/tex] = initial velocity of helium
[tex]v'_1 \ and \ v'_2[/tex] = final velocity of gold
[tex]\theta _1 \ and \ \theta _2[/tex] = scattered angle for helium and gold respectively
Along the y - axis; the equation for conservation of momentum is :
[tex]0 = m_1 v_1' \theta_1 + m_2 v_2' sin \theta _2[/tex] ---- equation (2)
Equating equation (1) and (2); we have:
[tex](v'_2)^2 = \frac{m_1^2}{m_2^2}[(v_1)^2 - 2 v_1v_1' xos \theta _1 + (v'_1)^2][/tex] ----- equation (3)
However, the conservation of internal kinetic energy guves:
[tex]\frac{1}{2}m_1v_1^2 = \frac{1}{2}m_1(v_1')^2 + \frac{1}{2}m_2(v'_2)^2 \frac{m_1}{m_2}[/tex]
Making [tex](v_2')^2[/tex] the subject of the formula ; we have:
[tex](v_2')^2 = \frac{m_1}{m_2}(v_1^2-(v_1')^2)[/tex] ----- equation (4)
Replacing the expression of [tex](v'_2)^2[/tex] in equation (3) into equation (4) ; we have
[tex][(1+\frac{m_1}{m_2})(v_1')^2-2(\fracm_1}{m_2}(v_1'cos \theta _1)v_1 - (1-\frac{m_1}{m_2})(v_1)^2] = 0[/tex]
In the above expression;
replacing ;
[tex]1.548*10^7 \ m/s[/tex] [tex]for \ v_1[/tex]; [tex]\theta = 120^0[/tex]; [tex]m_1 = 6.68*10^{-27} \ kg[/tex]; [tex]m_2 = 3.29*10^{-25}\ kg[/tex]; we have:
[tex][1 + ( \frac{6.68*10^{-27}}{3.29*10^{-25}})(v_1')^2 - ( 2(\frac{6.68*10^{-27}}{3.29*10^{-25}}) (1.548*10^7)cos 120^0)v'_1-(1-\frac{6.68*10^{-27}}{3.29*10^{-25}})(1.548*10^7)^2 = 0[/tex]
[tex]1.02v^2 - (3.143 *10^5)v -2.348*10^{14} = 0[/tex]
The above is a quadratic equation; now solving by using the quadratic formula; we have:
[tex]v_1' = \frac{-3.143*10^5 \pm \sqrt{(3.143*10^5)^2 -4(1.02)(-2.348*10^{14})}}{2(1.02)}[/tex]
since we are considering the positive value from the above expression; we have
[tex]v'_1 = 1.50*10^7 \ m/s[/tex]
NOW; we substitute our known values into equation (4) in order to solve for [tex]v_2'[/tex]; we have:
[tex](v'_2 )^2 = \frac {6.68*10^{23}}{3.29*10^{-23}}((1.548*10^7)^2-(1.502*10^7)^2)[/tex]
[tex](v'_2 )^2 =2.848*10^{11} \ m^2/s^2[/tex]
[tex](v'_2 )=\sqrt{2.848*10^{11} \ m^2/s^2}[/tex]
[tex]v'_2 = 5.34 *10^5 \ m/s[/tex]
Therefore; the velocity of the gold nuclei [tex]v'_2 = 5.34 *10^5 \ m/s[/tex]
From equation (2)
[tex]0 = m_1 v_1' \theta_1 + m_2 v_2' sin \theta _2[/tex]
Therefore replacing our known values and solving for [tex]\theta_2[/tex]; we have:
[tex]sin \theta _2 =\frac{(6.68*10^{-27})(1.50*10^7)sin 120^0}{(3.29*10^{-25}(5.34*10^5)}[/tex]
[tex]sin \theta _2 = -0.4946[/tex]
[tex]\theta _2 =sin^{-1}( -0.4946)[/tex]
[tex]\theta _2 = -29.64^0[/tex]
∴ the angle of the velocity of gold nuclei = 29.64° clockwise (i.e down the horizontal)
b) Equation to determine the final kinetic energy [tex](K.E_f)[/tex]of helium is:
[tex]K.E_f = \frac{1}{2}m_1(v_1')^2[/tex]
[tex]= \frac{1}{2}(6.68*10^{-27})}(1.50*10^7)^2[/tex]
= [tex]7.52 *10^{-13} \ \ J[/tex]
Thus, the final kinetic energy of helium nucleus is [tex]7.52 *10^{-13} \ \ J[/tex]
I hope this explanation helps alot!.