Given:
The height of the given fig = 7.5 unit
The radius of the given fig = 3.6 unit
To find the volume of the given composite figure.
Formula
The volume of the given fig
[tex]V = V_{1}+V_{2}[/tex]
where,
[tex]V_{1}[/tex] be the volume of the cone
[tex]V_{2}[/tex] be the volume of the semicircle
[tex]V_{1}=\pi r^{2} h[/tex], r be the radius and h be the height
[tex]V_{2} = \frac{2}{3} \pi r^{3}[/tex], r be the radius
Now,
Putting, r= 3.6, h = 7.5 and π = 3.14 we get,
[tex]V_{1} =(3.14)(3.6^{2} )(7.5)[/tex] cube in
or, [tex]V_{1}= 305.208[/tex] cube in
And,
[tex]V_{2} =\frac{2}{3} (3.14)(3.6^{3})[/tex] cube in
or, [tex]V_{2} = 97.67[/tex] cube in
So,
[tex]V = 305.208+97.67[/tex] cube in
or, [tex]V = 402.878[/tex] = 402.88 cube in
Hence,
The volume of the given figure is 402.88 cube in.