Answer:
0.552 m/s
Explanation:
Given,
Mass of the block = 2.05 Kg
initial compression, x₁ = 0.03690 m
Spring constant, k = 830 N/m
coefficient of friction of the block, μ = 0.380
distance moved by the block,x₂ = 0.20 m
Speed, v = ?
Using conservation of energy
Initial spring energy + Work done by friction = Final spring energy + kinetic energy
[tex]\dfrac{1}{2}kx_1^2 - \mu mg x_2 = \dfrac{1}{2}kx_2^2 + \dfrac{1}{2}mv^2[/tex]
[tex]\dfrac{1}{2}\times 830\times 0.039^2 - 0.38\times 2.05\times 9.81\times 0.02 = \dfrac{1}{2}\times 830 \times 0.02^2 + \dfrac{1}{2}\times 2.05\times v^2[/tex]
v² = 0.3047
v = 0.552 m/s
Hence, the speed of the block is equal to 0.552 m/s