The answer for the following mention bellow.
Explanation:
Given:
Initial pressure ([tex]P_{1}[/tex]) = 150.0 kPa
Final pressure ([tex]P_{2}[/tex]) = 210.0 kPa
Initial volume ([tex]V_{1}[/tex]) = 1.75 L
Final volume ([tex]V_{2}[/tex]) = 1.30 L
Initial temperature ([tex]T_{1}[/tex]) = -23°C = 250 k
To find:
Final temperature ([tex]T_{2}[/tex])
We know;
According to the ideal gas equation;
P × V = n × R ×T
where;
P represents the pressure of the gas
V represents the volume of the gas
n represents the no of moles of the gas
R represents the universal gas constant
T represents the temperature of the gas
We know;
[tex]\frac{P*V}{T}[/tex] = constant
[tex]\frac{P_{1} }{P_{2} }[/tex] × [tex]\frac{V_{1} }{V_{2} }[/tex] = [tex]\frac{T_{1} }{T_{2} }[/tex]
Where;
([tex]P_{1}[/tex]) represents the initial pressure of the gas
([tex]P_{2}[/tex]) represents the final pressure of the gas
([tex]V_{1}[/tex]) represents the initial volume of the gas
([tex]V_{2}[/tex]) represents the final volume of the gas
([tex]T_{1}[/tex]) represents the initial temperature of the gas
([tex]T_{2}[/tex]) represents the final temperature of the gas
So;
[tex]\frac{150 * 1.75}{210 * 1.30}[/tex] = [tex]\frac{260}{T_{2} }[/tex]
([tex]T_{2}[/tex]) =260 k
Therefore the final temperature of the gas is 260 k