Respuesta :

The answer for the following mention bellow.

  • Therefore the final temperature of the gas is 260 k

Explanation:

Given:

Initial pressure ([tex]P_{1}[/tex]) = 150.0 kPa

Final pressure ([tex]P_{2}[/tex]) = 210.0 kPa

Initial volume ([tex]V_{1}[/tex]) = 1.75 L

Final volume ([tex]V_{2}[/tex]) = 1.30 L

Initial temperature ([tex]T_{1}[/tex]) = -23°C = 250 k

To find:

Final temperature ([tex]T_{2}[/tex])

We know;

According to the ideal gas equation;

P × V = n × R ×T

where;

P represents the pressure of the gas

V represents the volume of the gas

n represents the no of moles of the gas

R represents the universal gas  constant

T represents the temperature of the gas

We know;

[tex]\frac{P*V}{T}[/tex] = constant

[tex]\frac{P_{1} }{P_{2} }[/tex] × [tex]\frac{V_{1} }{V_{2} }[/tex] = [tex]\frac{T_{1} }{T_{2} }[/tex]

Where;

([tex]P_{1}[/tex]) represents the initial pressure of the gas

([tex]P_{2}[/tex]) represents the final pressure of the gas

([tex]V_{1}[/tex]) represents the initial volume of the gas

([tex]V_{2}[/tex]) represents the final volume of the gas

([tex]T_{1}[/tex]) represents the initial temperature of the gas

([tex]T_{2}[/tex]) represents the final temperature of the gas

So;

[tex]\frac{150 * 1.75}{210 * 1.30}[/tex] = [tex]\frac{260}{T_{2} }[/tex]

([tex]T_{2}[/tex]) =260 k

Therefore the final temperature of the gas is 260 k

ACCESS MORE