Answer:
20.015497598 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration
h = 530 m (assumed)
[tex]v=u+at\\\Rightarrow v=0+10\times 2\\\Rightarrow v=20\ m/s[/tex]
[tex]s=ut+\dfrac{1}{2}at^2\\\Rightarrow s=0\times t+\dfrac{1}{2}\times 10\times 2^2\\\Rightarrow s=20\ m[/tex]
[tex]v^2-u^2=2as\\\Rightarrow -u^2=2as-v^2\\\Rightarrow u=\sqrt{v^2-2as}\\\Rightarrow u=\sqrt{0^2-2\times -9.81\times (530-20)}\\\Rightarrow u=100.030995196\ m/s[/tex]
As the momentum of the system is conserved
[tex]m_tv_t=m_1v_1+m_2v_2\\\Rightarrow v_2=\dfrac{m_tv_t-m_1v_1}{m_2}\\\Rightarrow v_2=\dfrac{1500\times 20-\dfrac{1}{3}\times 1500\times 100.030995196}{1500\times \dfrac{2}{3}}\\\Rightarrow v_2=-20.015497598\ m/s[/tex]
Speed of the heavier fragment is 20.015497598 m/s