Answer:
[tex]-0.5\times 10^{-4} A/s[/tex]
Explanation:
We are given that
[tex]\frac{dV}{dt}=-0.01 V/s[/tex]
R=600 ohms
I=0.04 A
[tex]\frac{dR}{dt}=0.5ohm/s[/tex]
[tex]V=IR[/tex]
[tex]\frac{dV}{dt}=\frac{\partial V}{dI}\frac{dI}{dt}+\frac{\partial V}{dR}\frac{dR}{dt}[/tex]
[tex]\frac{dV}{dt}=R\frac{dI}{dt}+I\frac{dR}{dt}[/tex]
Substitute the values
[tex]-0.01=600\times \frac{dI}{dt}+0.04\times 0.5[/tex]
[tex]-0.01-0.04\times 0.5=600\frac{dI}{dt}[/tex]
[tex]-0.03=600\frac{dI}{dt}[/tex]
[tex]\frac{dI}{dt}=\frac{-0.03}{600}=-0.5\times 10^{-4}A/s[/tex]