Respuesta :
Answer:
[tex]62.1566632757\ ^{\circ}C[/tex]
[tex]15.9715157681\ ^{\circ}C[/tex]
Explanation:
[tex]\Delta T[/tex] = Change in termperature
[tex]\Delta L[/tex] = Change in length
We have the relation
[tex]\dfrac{\Delta L}{\Delta T}=\dfrac{22.49-12.66}{100-0}=\dfrac{18.77-12.66}{t-0}\\\Rightarrow t=\dfrac{18.77-12.66}{0.0983}\\\Rightarrow t=62.1566632757\ ^{\circ}C[/tex]
The temperature is [tex]62.1566632757\ ^{\circ}C[/tex]
[tex]\dfrac{\Delta L}{\Delta T}=\dfrac{22.49-12.66}{100-0}=\dfrac{14.23-12.66}{t-0}\\\Rightarrow t=\dfrac{14.23-12.66}{0.0983}\\\Rightarrow t=15.9715157681\ ^{\circ}C[/tex]
The temperature is [tex]15.9715157681\ ^{\circ}C[/tex]
(A) When the length is 18.77 cm, the temperature will be "62.2°C".
(B) When the length is 14.23 cm, the temperature will be "15.98°C".
(A)
According to the question,
The change in length will be:
= [tex]l_2-l_1[/tex]
= [tex]22.49-12.66[/tex]
= [tex]9.83 \ cm[/tex]
The change per degree will be:
= [tex]\frac{Change \ in \ length}{Temperature}[/tex]
= [tex]\frac{9.83}{100}[/tex]
= [tex]0.0983 \ cm/deg[/tex]
Now,
The change in length,
= [tex]18.77-12.66[/tex]
= [tex]6.11 \ cm[/tex]
hence,
The temperature,
= [tex]\frac{6.11}{0.0983}[/tex]
= [tex]62.2^{\circ} C[/tex]
(B)
The change in length,
= [tex]14.23-12.66[/tex]
= [tex]1.57 \ cm[/tex]
hence,
The temperature will be:
= [tex]\frac{1.57}{0.0983}[/tex]
= [tex]15.98^{\circ} C[/tex]
Thus the above answers are correct.
Learn more about temperature here:
https://brainly.com/question/847609