Answer:
0.7692
Step-by-step explanation:
John is in either if two states: Happy or Sad.
P(Happy)=1/5
P(Sad)=4/5
Let the first column represent the Happy state and the second column represent the Sad Sate.
The transition matrix is:
[TeX]T=\left(\begin{array}{ccc}\frac{4}{5} & \frac{1}{5}\\\frac{2}{3} & \frac{1}{3} \end{array} \right) [/TeX]
We want to determine the equilibrium
matrix p=(x y) by solving pT=p.
[TeX]\left(\begin{array}{cc}x&y \end{array} \right) \left(\begin{array}{ccc}\frac{4}{5} & \frac{1}{5}\\\frac{2}{3} & \frac{1}{3} \end{array} \right)=\left(\begin{array}{cc}x&y \end{array} \right) [/TeX]
gives us the two equations:
[TeX]\frac{4}{5}x+\frac{2}{3}y=x [/TeX]
[TeX]\frac{1}{5}x+\frac{1}{3}y=y [/TeX]
Add -x to the first equation and -y to the second equation.
[TeX]-\frac{1}{5}x+\frac{2}{3}y=0 [/TeX]
[TeX]\frac{1}{5}x-\frac{2}{3}y=0 [/TeX]
The two equations are equivalent so we discard one and replace it with:
x+y=1
[TeX]\frac{1}{5}x-\frac{2}{3}y=0 [/TeX]
This gives: x=0.7692, y=0.2308
Since x=Happy State, the probability that John will be happy in the long run is 0.7692