Respuesta :

Given:

The base of the given figure = 23.8 ft

Height of the parallelogram = 15 ft

To find the area of the shaded region.

Formula

  • [tex]A = A_{1} -A_{2}[/tex]

where, [tex]A[/tex] be the area of the shaded region

[tex]A_{1}[/tex] be the area of the parallelogram.

[tex]A_{2}[/tex] be the area of the triangular part.

  • The area of triangle [tex]A_{2} = \frac{1}{2} bh[/tex] where, b be the base and h be the height.
  • The area of the parallelogram [tex]A_{1} =( base)(height)[/tex]
  • By Pythagoras theorem, [tex]hypotenuse^{2} = base^{2}+height^{2}[/tex]

Now,

Putting, Base = 21, Hypotenuse = 23.8 we get,

[tex]Height^{2} = 23.8^{2}-21^{2}[/tex]

or, [tex]Height = \sqrt{566.44-441}[/tex]

or, [tex]Height = 11.2[/tex]

Therefore,

Area of the parallelogram [tex]A_{1} = (23.8)(15)[/tex] sq ft = 357 sq ft

Area of the triangle [tex]A_{2}[/tex] = [tex]\frac{1}{2}(11.2)(21)[/tex] sq ft = 117.6 sq ft

So,

The area of the shaded part = (357-117.6) sq ft = 239.4 sq ft

Hence,

The area of the shaded part is 239.4 sq ft.

ACCESS MORE