Answer:
103.1 V
Explanation:
We are given that
Initial circumference=C=168 cm
[tex]\frac{dC}{dt}=-15cm/s[/tex]
Magnetic field,B=0.9 T
We have to find the magnitude of the emf induced in the loop after exactly time 8 s has passed since the circumference of the loop started to decrease.
Magnetic flux=[tex]\phi=BA=B(\pi r^2)[/tex]
Circumference,C=[tex]2\pi r[/tex]
[tex]r=\frac{C}{2\pi}[/tex]
[tex]r=\frac{168}{2\pi}[/tex] cm
[tex]\frac{dr}{dt}=\frac{1}{2\pi}\frac{dC}{dt}=\frac{1}{2\pi}(-15)=-\frac{15}{2\pi} cm/s[/tex]
[tex]\int dr=-\int \frac{15}{2\pi}dt[/tex]
[tex]r=-\frac{15}{2\pi}t+C[/tex]
When t=0
[tex]r=\frac{168}{2\pi}[/tex]
[tex]\frac{168}{2\pi}=C[/tex]
[tex]r=-\frac{15}{2\pi}t+\frac{168}{2\pi}[/tex]
E=[tex]-\frac{d\phi}{dt}=-\frac{d(B\pi r^2)}{dt}=-2\pi rB\frac{dr}{dt}[/tex]
[tex]E=-2\pi(-\frac{5}{2\pi}t+\frac{168}{2\pi})B\times -\frac{15}{2\pi}[/tex]
t=8 s
B=0.9
[tex]E=2\pi\times \frac{15}{2\pi}\times 0.9(-\frac{15}{2\pi}(8)+\frac{168}{2\pi})[/tex]
[tex]E=103.1 V[/tex]