Answer:
20.2057 Units.
Step-by-step explanation:
First, we determine the length of the cable.
Distance between Centerville (8,0) and point (x,0) is given as:
Distance between point (x,0) and Springfield(0,7) is:
[tex]\sqrt{(7-0)^2+(0-x)^{2}}=\sqrt{(7)^2+(x)^{2}}[/tex]
Distance between point (x,0) and Shelvyfield(0,-7) is:
[tex]\sqrt{(-7-0)^2+(0-x)^{2}}=\sqrt{(7)^2+(x)^{2}}[/tex]
Therefore the Length of the Cable L(x)
To find the critical point, we set the derivative of L(x)=0
[tex]L^{'}(x)=-1+\frac{2x}{\sqrt{\left( 49 - x^{2}\right) }}[/tex]
[tex]\frac{-\sqrt{\left( 49 - x^{2}\right)}+2x}{\sqrt{\left( 49 - x^{2}\right)}}=0\\-\sqrt{\left( 49 - x^{2}\right)}+2x=0\\\sqrt{\left( 49 - x^{2}\right)}=2x\\(\sqrt{\left( 49 - x^{2}\right)})^2=(2x)^2\\49 - x^{2}=4x^2\\49=5x^2\\x^2=\frac{49}{5}\\x= 3.1305[/tex]
To verify that L(x) has a minimum at this critical number we compute the second derivative L″(x) and find its value at the critical number.
[tex]L^{''}(x)=\frac{\left( 98\right) \,\sqrt{\left( 49 - x^{2}\right) }}{{\left( 7 - x\right) }^{2}\,{\left( 7+x\right) }^{2}}\\At \:x=3.1305, L^{''}=0.3993[/tex]
Since [tex]L^{''}(x)[/tex] is positive, the minimum point of L(x) exists.
Next, we find the minimum length by substituting z=3.1305 into L(x)
[tex]L(3.1305)=(8-3.1305)+2\sqrt{(7)^2+(3.1305)^{2}}[/tex]
Minimum Length, L=20.2057
The minimum length of the cable is 20.2057 Units.