Answer:
(D) 3
Explanation:
The angular momentum is given by:
[tex]\vec{L}=\vec{r}\ X \ \vec{p}[/tex]
Thus, the magnitude of the angular momenta of both solar systems are given by:
[tex]L_1=Rm_1v_1=Rm_1(\omega R)=R^2m_1(\frac{2\pi}{T_1})=2\pi R^2\frac{m_1}{T_1}\\\\L_2=Rm_2v_2=2\pi R^2\frac{m_2}{T_2}[/tex]
where we have taken that both systems has the same radius.
By taking into account that T1=3T2, we have
[tex]L_1=2\pi R^2\frac{m_1}{3T_2}=\frac{1}{3}2\pi R^2\frac{1}{T_2}m_1=\frac{1}{3}\frac{L_2}{m_2}m_1[/tex]
but L1=L2=L:
[tex]L=\frac{1}{3}L\frac{m_1}{m_2}\\\\\frac{m_1}{m_2}=3[/tex]
Hence, the answer is (D) 3
HOPE THIS HELPS!!