Respuesta :
Answer:
36.88% probability that her pulse rate is between 69 beats per minute and 81 beats per minute.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the zscore of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:
[tex]\mu = 75, \sigma = 12.5[/tex]
Find the probability that her pulse rate is between 69 beats per minute and 81 beats per minute.
This is the pvalue of Z when X = 81 subtracted by the pvalue of Z when X = 69.
X = 81
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{81 - 75}{12.5}[/tex]
[tex]Z = 0.48[/tex]
[tex]Z = 0.48[/tex] has a pvalue of 0.6844
X = 69
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
[tex]Z = \frac{69 - 75}{12.5}[/tex]
[tex]Z = -0.48[/tex]
[tex]Z = -0.48[/tex] has a pvalue of 0.3156
0.6844 - 0.3156 = 0.3688
36.88% probability that her pulse rate is between 69 beats per minute and 81 beats per minute.
Answer:
[tex]P(69<X<81)=P(\frac{69-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{81-\mu}{\sigma})=P(\frac{69-75}{12.5}<Z<\frac{81-75}{12.5})=P(-0.48<z<0.48)[/tex]
And we can find this probability with this difference:
[tex]P(-0.48<z<0.48)=P(z<0.48)-P(z<-0.48)=0.684-0.316= 0.368 [/tex]
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the pulse rates of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(75,12.5)[/tex]
Where [tex]\mu=75[/tex] and [tex]\sigma=12.5[/tex]
We are interested on this probability
[tex]P(69<X<81)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(69<X<81)=P(\frac{69-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{81-\mu}{\sigma})=P(\frac{69-75}{12.5}<Z<\frac{81-75}{12.5})=P(-0.48<z<0.48)[/tex]
And we can find this probability with this difference:
[tex]P(-0.48<z<0.48)=P(z<0.48)-P(z<-0.48)=0.684-0.316= 0.368 [/tex]