Answer: Confidence interval : (7.659.8.981)
Step-by-step explanation:
Since we have given that
n = 85
[tex]\bar{x}=8.32[/tex]
s = 3.11
At 95% confidence, z = 1.96
Margin of error would be :
[tex]ME=z\dfrac{s}{\sqrt{n}}\\\\ME=1.96\times \dfrac{3.11}{\sqrt{85}}\\\\ME=0.661[/tex]
So, confidence interval for μ would be:
[tex]\bar{x}\pm ME\\\\=8.32\pm 0.661\\\\=(8.32-0.661,8.32+0.661)\\\\=(7.659.8.981)[/tex]
Significance test for μ :
[tex]H_0:\bar{x}=8.32\\\\H_1:\bar{x}\neq 8.32[/tex]
Hence, confidence interval would be (7.659.8.981)