the average american receives 2.28 mSv dose equivalent from radon each year. Assuming you receive this dose, and it all comes from the 5.49 MeV alpha particle emitted by Rn-222, how much energy is deposited in your body each year from radon. Approximately how many decays does this represent.

Respuesta :

Answer:

The approximate number of decays  this represent  is  [tex]N= 23*10^{10}[/tex]  

Explanation:

 From the question we are told that

    The amount of Radiation received by an average american is [tex]I_a = 2.28 \ mSv[/tex]

     The source of the radiation is [tex]S = 5.49 MeV \ alpha \ particle[/tex]

 Generally

            [tex]1 \ J/kg = 1000 mSv[/tex]

   Therefore  [tex]2.28 \ mSv = \frac{2.28}{1000} = 2.28 *10^{-3} J/kg[/tex]

Also  [tex]1eV = 1.602 *10^{-19}J[/tex]

  Therefore  [tex]2.28*10^{-3} \frac{J}{kg} = 2.28*10^{-3} \frac{J}{kg} * \frac{1ev}{1.602*10^{-19} J} = 1.43*10^{16} ev/kg[/tex]

           An Average american weighs 88.7 kg

      The total energy received is mathematically evaluated as

        [tex]1 kg ------> 1.423*10^{16}ev \\88.7kg --------> x[/tex]

Cross-multiplying and making x the subject

           [tex]x = 88.7 * 1.423*10^{16} eV[/tex]

              [tex]x = 126.2*10^{16}eV[/tex]

Therefore the total  energy  deposited is [tex]x = 126.2*10^{16}eV[/tex]

The approximate number of decays  this represent  is mathematically evaluated as

            N = [tex]\frac{x}{S}[/tex]

Where n is the approximate number of decay

   Substituting values

                             [tex]N = \frac{126 .2*10^{16}}{5.49*10^6}[/tex]  

                                  [tex]N= 23*10^{10}[/tex]  

                     

             

ACCESS MORE