A plane monochromatic radio wave (? = 0.3 m) travels in vacuum along the positive x-axis, with a time-averaged intensity I = 45.0 W/m2. Suppose at time t = 0, the electric field at the origin is measured to be directed along the positive y-axis with a magnitude equal to its maximum value. What is Bz, the magnetic field at the origin, at time t = 1.5 ns? Bz = I got .04800 but that answer didnt work.

Respuesta :

Answer:

The magnetic field [tex]B_Z[/tex] [tex]= - 6.14*10^{-7} T[/tex]

Explanation:

From the question we are told that

      The wavelength is [tex]\lambda = 0.3m[/tex]

       The intensity is [tex]I = 45.0W/m^2[/tex]

       The time is [tex]t = 1.5ns = 1.5 *10^{-9}s[/tex]

Generally radiation intensity is mathematically represented as

              [tex]I = \frac{1}{2} c \epsilon_o E_o^2[/tex]

Where  c is the speed of light with a constant value of [tex]3.0 *10^8 m/s[/tex]

              [tex]E_i[/tex] is the electric field

             [tex]\epsilon_o[/tex] is the permittivity  of free space with a constant value of [tex]8.85*10^{-12} C^2 /N \cdot m^2[/tex]

 Making [tex]E_o[/tex] the subject of the formula we have

           [tex]E_i = \sqrt{\frac{2I}{c \epsilon_0} }[/tex]

      Substituting values

          [tex]E_i = \sqrt{\frac{2* 45 }{(3*10^8 * (8.85*10^{-12}) )} }[/tex]

               [tex]= 184.12 \ V/m[/tex]

Generally electric and magnetic field are related by the mathematical equation as follows

             [tex]\frac{E_i}{B_i} = c[/tex]

Where [tex]B_O[/tex] is the magnetic field

           making  [tex]B_O[/tex] the subject

                 [tex]B_i = \frac{E_i}{c}[/tex]

Substituting values

                 [tex]B_i = \frac{184.12}{3*10^8}[/tex]

                       [tex]= 6.14 *10^{-7}T[/tex]

Next is to obtain the wave number

  Generally  the wave number is mathematically represented as

                          [tex]n = \frac{2 \pi }{\lambda }[/tex]

Substituting values

                          [tex]n = \frac{2 \pi}{0.3}[/tex]

                              [tex]= 20.93 \ rad/m[/tex]

Next is to obtain the frequency

      Generally  the  frequency f is mathematically represented as

                    [tex]f = \frac{c}{\lambda}[/tex]

Substituting values

                   [tex]f = \frac{3 *10^8}{0.3}[/tex]

                      [tex]= 1*10^{9} s^{-1}[/tex]

Next is to obtain the angular velocity

                Generally  the  angular velocity  [tex]w[/tex] is mathematically represented as

                       [tex]w = 2 \pi f[/tex]

                           [tex]w = 2 \pi (1* 10^9)[/tex]

                              [tex]= 2 \pi * 10^9 rad/s[/tex]

Generally  the sinusoidal electromagnetic waves for the magnetic field B moving in the positive z direction is expressed as

                       [tex]B_z = B_i cos (nx -wt)[/tex]

Since the magnetic field is induced at the origin then the equation above is reduced to

                   [tex]B_z = B_i cos (n(0) -wt) = B_i cos ( -wt)[/tex]

x =0 because it is the origin we are considering

 Substituting values  

                      [tex]B_z = (6.14*10^{-7}) cos (- (2 \pi * 10^{9})(1.5 *10^{-9}))[/tex]

                           [tex]= - 6.14*10^{-7} T[/tex]

ACCESS MORE