The population of Thomasville was 2,460 in 2006, and is growing at an annual rate of 3.5%. This can be modeled by the exponential function f(x) = 2460(1.035) ^x.
How does the function change over the interval from x=2 to x=3?
A. f(x) increases by 3.5%
B. f(x) decreases by 3.5%
C. f(x) increases by a factor of 2460
D. f(x) decreases by a factor of 2460

Respuesta :

Answer:

A. f(x) increases by 3.5%

Step-by-step explanation:

Given:

City of Thomasville.

Population in 2006, [tex]P_o[/tex] = 2460

Exponential function, f(x) = 2460(1.035) ^x    ...equivalent to [tex]P=P_o(1+r)^t[/tex]

Function change at x = 2, 3

According to the question:

Plugging the values of x= 2 and x=3 we have to find the population at different x.

So,

At x= 2                                      At x=3

⇒ [tex]P_2=P_o(1+r)^t[/tex]                        ⇒ [tex]P_3=P_o(1+r)^t[/tex]

⇒ [tex]P_2=2460(1.035)^x[/tex]                     ⇒ [tex]P_3=2460(1.035)^x[/tex]

⇒ [tex]P_2=2460(1.035)^2[/tex]                     ⇒ [tex]P_3=2460(1.035)^3[/tex]

⇒ [tex]P_2=2622.4[/tex]                               ⇒ [tex]P_3=2707.7[/tex]

Percent change :

⇒ [tex]\triangle \% =\frac{Final\ value -Initial\ value}{Initial\ value} \times 100[/tex]

⇒ [tex]\triangle \% = \frac{(P_3-P_2)}{P_2} \times 100[/tex]

⇒ [tex]\triangle \% = \frac{(2707.7-2622.4)}{2622.4} \times 100[/tex]

⇒ [tex]\triangle \% = 3.5[/tex]

So,

The function f(x) increases by 3.5% option A is the right choice.