Answer:
a) [tex]\mu_{k} = 0.704[/tex], b) [tex]R = 0.312\,m[/tex]
Explanation:
a) The minimum coeffcient of friction is computed by the following expression derived from the Principle of Energy Conservation:
[tex]\frac{1}{2}\cdot k \cdot x^{2} = \mu_{k}\cdot m\cdot g \cdot \Delta s[/tex]
[tex]\mu_{k} = \frac{k\cdot x^{2}}{2\cdot m\cdot g \cdot \Delta s}[/tex]
[tex]\mu_{k} = \frac{\left(8050\,\frac{N}{m} \right)\cdot (0.06\,m)^{2}}{2\cdot (0.3\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (7\,m)}[/tex]
[tex]\mu_{k} = 0.704[/tex]
b) The speed of the block is determined by using the Principle of Energy Conservation:
[tex]\frac{1}{2}\cdot k \cdot x^{2} = \frac{1}{2}\cdot m \cdot v^{2}[/tex]
[tex]v = x\cdot \sqrt{\frac{k}{m} }[/tex]
[tex]v = (0.06\,m)\cdot \sqrt{\frac{8050\,\frac{N}{m} }{0.3\,kg} }[/tex]
[tex]v \approx 9.829\,\frac{m}{s}[/tex]
The radius of the circular loop is:
[tex]\Sigma F_{r} = -90\,N -(0.3\,kg)\cdot (9.807\,\frac{m}{s^{2}} ) = -(0.3\,kg)\cdot \frac{v^{2}}{R}[/tex]
[tex]\frac{\left(9.829\,\frac{m}{s}\right)^{2}}{R} = 309.807\,\frac{m}{s^{2}}[/tex]
[tex]R = 0.312\,m[/tex]