A 0.300 kg block is pressed against a spring with a spring constant of 8050 N/m until the spring is compressed by 6.00 cm. When released, the block slides along a horizontal surface that is frictionless except for a 7.00 m long rough section.

a) The block comes to a stop exactly at the end of the rough section. What is the coefficient of kinetic friction between the block and the rough section?

b) The rough section is now polished, so that the entire track is frictionless. The block slides along the surface and into the circular loop at the end. If the normal force between the loop and the block is 90.0 N when the block reaches point P (the exact top of the loop), what is the radius R of the circular loop?

Respuesta :

Answer:

a) [tex]\mu_{k} = 0.704[/tex], b) [tex]R = 0.312\,m[/tex]

Explanation:

a) The minimum coeffcient of friction is computed by the following expression derived from the Principle of Energy Conservation:

[tex]\frac{1}{2}\cdot k \cdot x^{2} = \mu_{k}\cdot m\cdot g \cdot \Delta s[/tex]

[tex]\mu_{k} = \frac{k\cdot x^{2}}{2\cdot m\cdot g \cdot \Delta s}[/tex]

[tex]\mu_{k} = \frac{\left(8050\,\frac{N}{m} \right)\cdot (0.06\,m)^{2}}{2\cdot (0.3\,kg)\cdot (9.807\,\frac{m}{s^{2}} )\cdot (7\,m)}[/tex]

[tex]\mu_{k} = 0.704[/tex]

b) The speed of the block is determined by using the Principle of Energy Conservation:

[tex]\frac{1}{2}\cdot k \cdot x^{2} = \frac{1}{2}\cdot m \cdot v^{2}[/tex]

[tex]v = x\cdot \sqrt{\frac{k}{m} }[/tex]

[tex]v = (0.06\,m)\cdot \sqrt{\frac{8050\,\frac{N}{m} }{0.3\,kg} }[/tex]

[tex]v \approx 9.829\,\frac{m}{s}[/tex]

The radius of the circular loop is:

[tex]\Sigma F_{r} = -90\,N -(0.3\,kg)\cdot (9.807\,\frac{m}{s^{2}} ) = -(0.3\,kg)\cdot \frac{v^{2}}{R}[/tex]

[tex]\frac{\left(9.829\,\frac{m}{s}\right)^{2}}{R} = 309.807\,\frac{m}{s^{2}}[/tex]

[tex]R = 0.312\,m[/tex]

ACCESS MORE