Which 2 values of x are roots of the polynomial below?

Given:
The given polynomial is:
[tex]f(x)=[/tex] [tex]3x^{2}-3x+1[/tex]
To find the roots of the given polynomial.
To find the roots we have to take [tex]f(x) = 0[/tex]
So,
[tex]3x^{2} -3x+1 = 0[/tex]
Formula
By quadratic formula, the root of the equation [tex]ax^{2} +bx+c = 0[/tex] is,
[tex]x = \frac{-b+\sqrt{b^{2}-4ac } }{2a}[/tex] and [tex]\frac{-b-\sqrt{b^{2} -4ac} }{2a}[/tex]
Now,
Putting, [tex]a=3, b=-3, c=1[/tex] we get,
[tex]x = \frac{3+\sqrt{3^{2}-4(3)(1) } }{(2)(3)}[/tex] and [tex]\frac{3-\sqrt{3^{2}-4(3)(1) } }{(2)(3)}[/tex]
[tex]x = \frac{3+\sqrt{-3} }{6}[/tex] and [tex]x=\frac{3-\sqrt{-3} }{6}[/tex]
Hence,
The values of the roots of the given polynomial are[tex]x=\frac{3+\sqrt{-3} }{6}[/tex] and [tex]x=\frac{3-\sqrt{-3} }{6}[/tex]
Hence, Option A and F are the correct answer.