Respuesta :

Given:

The radius of inner circle = 13 yd.

The width of the shaded region = 8 yd

To find the area of the shaded region.

Now,

The radius of the outer circle = 13+8 yd = 21 yd

Formula

The area of a circle of radius r unit is [tex]\pi r^{2}[/tex] sq unit.

[tex]A = A_{1}-A_{2}[/tex]

where, [tex]A[/tex] = The area of the shaded region

[tex]A_{1}[/tex] = Area of the outer region

[tex]A_{2}[/tex]= Area of the inner region

Now,

[tex]A_{1}[/tex][tex]=[/tex] [tex]\pi (21^{2})[/tex]

[tex]A_{1} = (3.14)(21)(21)[/tex]

[tex]A_{1}[/tex][tex]= 1384.74[/tex] sq yd

And,

[tex]A_{2}[/tex] [tex]=[/tex] [tex]\pi (13^{2})[/tex]

[tex]A_{2} = (3.14)(13)(13)[/tex]

[tex]A_{2}[/tex][tex]= 530.66[/tex] sq yd

Therefore,

[tex]A = 1384.74-530.66[/tex] sq yd

[tex]A = 854.08[/tex] sq yd

Hence,

The area of the shaded region 854.08 sq yd.

ACCESS MORE