Use Lagrange multipliers to find the maximum and minimum values of f(x,y)=x+4y subject to the constraint x2+y2=9, if such values exist. Round your answers to three decimal places. If there is no global maximum or global minimum, enter NA in the appropriate answer area. Maximum =

Respuesta :

The Lagrangian is

[tex]L(x,y,\lambda)=x+4y+\lambda(x^2+y^2-9)[/tex]

with critical points where the partial derivatives vanish.

[tex]L_x=1+2\lambda x=0\implies x=-\dfrac1{2\lambda}[/tex]

[tex]L_y=4+2\lambda y=0\implies y=-\dfrac2\lambda[/tex]

[tex]L_\lambda=x^2+y^2-9=0[/tex]

Substitute [tex]x,y[/tex] into the last equation and solve for [tex]\lambda[/tex]:

[tex]\left(-\dfrac1{2\lambda}\right)^2+\left(-\dfrac2\lambda\right)^2=9\implies\lambda=\pm\dfrac{\sqrt{17}}6[/tex]

Then we get two critical points,

[tex](x,y)=\left(-\dfrac3{\sqrt{17}},-\dfrac{12}{\sqrt{17}}\right)\text{ and }(x,y)=\left(\dfrac3{\sqrt{17}},\dfrac{12}{\sqrt{17}}\right)[/tex]

We get an absolute maximum of [tex]3\sqrt{17}\approx12.369[/tex] at the second point, and an absolute minimum of [tex]-3\sqrt{17}\approx-12.369[/tex] at the first point.

ACCESS MORE