The Lagrangian is
[tex]L(x,y,\lambda)=x+4y+\lambda(x^2+y^2-9)[/tex]
with critical points where the partial derivatives vanish.
[tex]L_x=1+2\lambda x=0\implies x=-\dfrac1{2\lambda}[/tex]
[tex]L_y=4+2\lambda y=0\implies y=-\dfrac2\lambda[/tex]
[tex]L_\lambda=x^2+y^2-9=0[/tex]
Substitute [tex]x,y[/tex] into the last equation and solve for [tex]\lambda[/tex]:
[tex]\left(-\dfrac1{2\lambda}\right)^2+\left(-\dfrac2\lambda\right)^2=9\implies\lambda=\pm\dfrac{\sqrt{17}}6[/tex]
Then we get two critical points,
[tex](x,y)=\left(-\dfrac3{\sqrt{17}},-\dfrac{12}{\sqrt{17}}\right)\text{ and }(x,y)=\left(\dfrac3{\sqrt{17}},\dfrac{12}{\sqrt{17}}\right)[/tex]
We get an absolute maximum of [tex]3\sqrt{17}\approx12.369[/tex] at the second point, and an absolute minimum of [tex]-3\sqrt{17}\approx-12.369[/tex] at the first point.