Given the function g(x) = -x^2+ 2x + 8, determine the average rate of change of
the function over the interval -3 < x < 2.

Respuesta :

Answer:

3

Step-by-step explanation:

The average rate of change of g(x) in the closed interval [ a, b ] is

[tex]\frac{g(b)-g(a)}{b-a}[/tex]

Here [ a, b ] = [ - 3, 2 ], thus

g(b) = g(2) = - 2² + 2(2) + 8 = - 4 + 4 + 8 = 8

g(a) = g(- 3) = - (- 3)² + 2(- 3) + 8 = - 9 - 6 + 8 = - 7

average rate of change = [tex]\frac{8-(-7)}{2-(-3)}[/tex] = [tex]\frac{15}{5}[/tex] = 3

ACCESS MORE