Answer:
966.12 mmHg
Explanation:
-We apply Gay-Lussac's Law which holds that the pressure of a given gas is directly proportional to it's temperature(in Kelvins) for a constant volume:
[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}[/tex]
Given that:
[tex]0\textdegree C=273.15K\\\\T_1=1.0\textdegree C=274.15K\\P_1=750.0\ mmHg\\\\T_2=80\textdegree C=353.15K\\\\P_2=?[/tex]
#We therefore substitute in the formula above to solve for the final pressure, P2:
[tex]\frac{P_1}{T_1}=\frac{P_2}{T_2}\\\\P_2=T_2\times\frac{P_1}{T_1}\\\\=353.15K\times\frac{750\ mmHg}{274.15K}\\\\=966.12\ mmHg[/tex]
Hence, is the new pressure inside the containe is 966.12 mmHg