Respuesta :

Answer:

64°

Step-by-step explanation:

In circle with center P, AD is diameter.

[tex] \therefore m\angle DPE + m\angle APE = 180\degree \\

\therefore (33k-9)\degree + 90\degree = 180\degree \\

\therefore (33k-9)\degree = 180\degree -90\degree \\

\therefore (33k-9)\degree = 90\degree \\

\therefore 33k-9 = 90\\

\therefore 33k= 90+9\\

\therefore 33k= 99\\

\therefore k= \frac{99}{33}\\

\therefore k=3\\

m\angle CPD = (20k +4)\degree \\

\therefore m\angle CPD = (20\times 3 +4)\degree \\

\therefore m\angle CPD =(60+4)\degree \\

\therefore m\angle CPD =64\degree \\

m\overset {\frown}{CD} = m\angle CPD\\

\therefore m\overset {\frown}{CD} = 64\degree

[/tex]

ACCESS MORE