Respuesta :

Answer:

A) (20,-3)

Step-by-step explanation:

we know that

If a ordered pair lie on the circle, then the ordered pair must satisfy the equation of the circle

we have

[tex]x^{2} +(y-12)^2=25^2[/tex]

The center of the circle is the point (0,12) and the radius is r=25 units

Verify

A) (20,-3)

substitute the value of x and y in the equation and then analyze the result

[tex]20^{2} +(-3-12)^2=25^2[/tex]

[tex]625=625[/tex] ----> is true

therefore

The ordered pair lie on the circle

B) (-7,24)

substitute the value of x and y in the equation and then analyze the result

[tex]-7^{2} +(24-12)^2=25^2[/tex]

[tex]193=625[/tex] ----> is not true

therefore

The ordered pair not lie on the circle

C) (0,13)

substitute the value of x and y in the equation and then analyze the result

[tex]0^{2} +(13-12)^2=25^2[/tex]

[tex]1=625[/tex] ----> is not true

therefore

The ordered pair not lie on the circle

D) (-25,-13)

substitute the value of x and y in the equation and then analyze the result

[tex]-25^{2} +(-13-12)^2=25^2[/tex]

[tex]1,250=625[/tex] ----> is not true

therefore

The ordered pair not lie on the circle

Answer:

20,-3

Step-by-step explanation:

ACCESS MORE