Respuesta :
Answers and Step-by-step explanations
13. Square both sides: x^2 + 4x + 4 = 16(x - 2) = 16x - 32
Move all the terms to one side: x^2 - 12x + 36 = 0
Factorize: (x - 6)^2 = 0 ⇒ x = 6
14. Move one of the roots to one side: [tex]-\sqrt{2x-1} =\sqrt{3x-12}[/tex]
Square both sides: 2x - 1 = 3x - 12
Solve for x: x = 11
15. Subtract 4 from both sides: x - 4 = [tex]2\sqrt{x-4}[/tex]
Square both sides: x^2 - 8x + 16 = 4(x - 4) = 4x - 16
Move all the terms to one side: x^2 - 12x + 32 = 0
Factorize: (x - 4)(x - 8) = 0 ⇒ x = 4 or x = 8
16. Square both sides: x^2 - 4x + 4 = 9x - 36
Move all the terms to one side: x^2 - 13x + 40 = 0
Factorize: (x - 5)(x - 8) = 0 ⇒ x = 5 or x = 8
Hope this helps!
Answer:
13. x = 6
14. No real solutions
15. x = 4, 8
16. x = 5, 8
Step-by-step explanation:
13. Square both sides
(x + 2)² = 4²(x - 2)
x² + 4x + 4 = 16x - 32
x² - 12x + 36 = 0
x² - 6x - 6x + 36 = 0
x(x - 6) - 6(x - 6) = 0
(x - 6)(x - 6) = 0
x = 6
14. sqrt(2x - 1) = -sqrt(3x - 12)
No real solutions because a positive square root can not be equal to a negative square root
15. x - 4 = 2sqrt(x - 4)
(x - 4)² = 4(x - 4)
(x - 4)² - 4(x - 4) = 0
(x - 4)(x - 4 - 4) = 0
(x - 4)(x - 8) = 0
x = 4, 8
16. x - 2 = sqrt(9x - 36)
(x - 2)² = (9x - 36)
x² - 4x + 4 - 9x + 36 = 0
x² - 13x + 40 = 0
x² - 5x - 8x + 40 = 0
x(x - 5) - 8(x - 5) = 0
(x - 8)(x - 5) = 0
x = 5, 8