Find the area of the region enclosed by f(x) and the x axis for the given function over the specified u reevaluate f(x)=x^2+3x+4 x<3 f(x)=4x+10 x greater than or equal to 3 on -3,4

Respuesta :

Answer:

A = 68 unit^2

Step-by-step explanation:

Given:-

The piece-wise function f(x) is defined over an interval as follows:

                       f(x) =  { x^2+3x+4    , x < 3

                       f(x) =  { x^2+3x+4     , x≥3

                        Domain : [ -3 , 4 ]

Find:-

Find the area of the region enclosed by f(x) and the x axis

Solution:-

- The best way to tackle problems relating to piece-wise functions is to solve for each part individually and then combine the results.

- The first portion of function is valid over the interval [ -3 , 3 ]:      

                       [tex]f(x) = x^2+3x+4[/tex]

- The area "A1" bounded by f(x) is given as:

                      [tex]A1 = \int\limits^a_b {f(x)} \, dx[/tex]

Where,  The interval of the function { -3 , 3 ] = [ a , b ]:

                     [tex]A1 = \int\limits^a_b {x^2+3x+4} \, dx\\\\A1 = \frac{x^3}{3} + \frac{3x^2}{2} + 4x |\limits_-_3^3 \\\\A1 = \frac{3^3}{3} + \frac{3*3^2}{2} + 4*3 - \frac{-3^3}{3} - \frac{3(-3)^2}{2} - 4(-3)\\\\A1 = 9 + 13.5 +12 + 9-13.5+12\\\\A1 =42 unit^2[/tex]

- Similarly for the other portion of piece-wise function covering the interval [3 , 4] :

                     [tex]f(x) = 4x+10[/tex]

- The area "A2" bounded by f(x) is given as:

                      [tex]A2 = \int\limits^a_b {f(x)} \, dx[/tex]

Where,  The interval of the function { 3 , 4 ] = [ a , b ]:

                     [tex]A2 = \int\limits^a_b {4x+10} \, dx\\\\A2 = 2x^2 + 10x |\limits_3^4 \\\\A2 = 2*(4)^2 + 10*4 - 2*(3)^2 - 10*3\\\\A2 = 32 + 40 - 18-30\\\\A2 =26 unit^2[/tex]

- The total area "A" bounded by the piece-wise function over the entire domain [ -3 , 4 ] is given:

                     A = A1 + A2

                     A = 42 + 26

                     A = 68 unit^2