Respuesta :

Answer:

7. x = -2 +/- [tex]4i\sqrt{5}[/tex]

8. x = 2 or x = 6

9. x = -2 +/- [tex]\frac{\sqrt{26} }{2} i[/tex]

10. t = -3 +/- [tex]\sqrt{35}[/tex]

Step-by-step explanation:

7. Subtract 320 from both sides: 4(x + 2)^2 = -320

Divide by 4: (x + 2)^2 = -80

Square root both sides: x + 2 = +/- [tex]\sqrt{-80}[/tex]. We need to add the imaginary i to this: +/- [tex]\sqrt{-80}[/tex] = +/- [tex]i\sqrt{80}[/tex] = +/- [tex]4i\sqrt{5}[/tex]

Subtract 2 from both sides: x = -2 +/- [tex]4i\sqrt{5}[/tex]

8. Add 18 to both sides: 7(x - 4)^2 = 28

Divide by 7: (x - 4)^2 = 4

Square root both sides: x - 4 = +/- 2

Add 4 to both sides: x = 4 +/- 2  ⇒  x = 2 or x = 6

9. Add 5 to both sides: -2(x + 2)^2 = 13

Divide by -2: (x + 2)^2 = -13/2

Square root both sides: x + 2 = +/- [tex]\sqrt{-13/2}[/tex]. We again need i: +/- [tex]\sqrt{-13/2}[/tex] = +/- [tex]i\sqrt{13/2} =[/tex] +/- [tex]\frac{\sqrt{26} }{2} i[/tex]

Subtract 2 from both sides: x = -2 +/- [tex]\frac{\sqrt{26} }{2} i[/tex]

10. Multiply by 5 on both sides: (t + 3)^2 = 35

Square root both sides: t + 3 = +/- [tex]\sqrt{35}[/tex]

Subtract 3: t = -3 +/- [tex]\sqrt{35}[/tex]

Hope this helps!

Answer:

7. -2 + 4sqrt(5) i, -2 - 4sqrt(5) i

8. x = 2, 6

9. x = -2 + sqrt(13/2) i, -2 - sqrt(13/2) i

10. t = -3 + sqrt(35), -3 - sqrt(35)

Step-by-step explanation:

7. 4(x + 2)² + 320 = 0

(x + 2)² = -80

x + 2 = +/- i × sqrt(80)

x + 2 = +/- i × 4sqrt(5)

x = -2 +/- i × 4sqrt(5)

8. 7(x - 4)² - 18 = 10

(x - 4)² = 4

x - 4 = +/- 2

x = 2, 6

9. -2(x + 2)² - 5 = 8

(x + 2)² = -13/2

(x + 2) = +/- i × sqrt(13/2)

x = -2 +/- i × sqrt(13/2)

10. 1/5(t + 3)² = 7

(t + 3)² = 35

t + 3 = +/- sqrt(35)

t = -3 +/- sqrt(35)