Respuesta :
Since, by definition, [tex]i^2=-1[/tex], we deduce that [tex]\sqrt{-1}=i[/tex]
So, we have
[tex]2\sqrt{-16}+\sqrt{-9}=2\sqrt{-1\cdot 16}+\sqrt{-1\cdot 9}=2+\sqrt{-1}\sqrt{16}+\sqrt{-1}\sqrt{9}=2\cdot i\cdot 4+3i=8i+3i=11i[/tex]
Answer:
11i
Step-by-step explanation:
These roots are imaginary, but let's make it so that i=the square root of -1. simplify the two roots to get 4i and 2i. Multiply the 4i by 2 to get 8i. add them together to get 11i
TL;DR
2x4i+3i
8i+3i
11i