Respuesta :
solve for v(t)=0 over the interval [0,2]Â
sin(pi)<0, try t=pi/2,Â
3e^(-pi/4)sin(pi)= 0, so the interval 0 to pi/2 the particle travels forward [0,pi/2), then it goes negative for the rest of the interval (pi/2,2) and travels backward.Â
total distance = |integral 0 to pi/2 v(t) dt| + |integral pi/2 to 2 v(t) dt|
∫[0 to Ï€/2] v(t) dt = ∫[0 to Ï€/2] (3 e^(−t/2) sin(2t)) dtÂ
. . . . . . . . . . . . . = ∫[0 to Ï€/2] (3 e^(−t/2) sin(2t)) dtÂ
. . . . . . . . . . . . . = −6/17 e^(−t/2) (sin(2t) + 4cos(2t)) |[0 to Ï€/2]Â
. . . . . . . . . . . . . = −6/17 (e^(−π/4) (sin(Ï€) + 4cos(Ï€)) − e^(0) (sin(0) + 4cos(0)))Â
. . . . . . . . . . . . . = −6/17 (e^(−π/4) (0 − 4) − (0 + 4))Â
. . . . . . . . . . . . . = −6/17 (−4e^(−π/4) − 4)Â
. . . . . . . . . . . . . = 24/17 (e^(−π/4) + 1)Â
. . . . . . . . . . . . . = 2.05544Â
∫[Ï€/2 to 2] v(t) dt = ∫[Ï€/2 to 2] (3 e^(−t/2) sin(2t)) dtÂ
. . . . . . . . . . . . . = ∫[Ï€/2 to 2] (3 e^(−t/2) sin(2t)) dtÂ
. . . . . . . . . . . . . = −6/17 e^(−t/2) (sin(2t) + 4cos(2t)) |[Ï€/2 to 2]Â
. . . . . . . . . . . . . = −6/17 (e^(−1) (sin(4) + 4cos(4)) − e^(−π/4) (sin(Ï€) + 4cos(Ï€)))Â
. . . . . . . . . . . . . = −6/17 ( (sin(4)+4cos(4))/e − e^(−π/4) (0 − 4))Â
. . . . . . . . . . . . . = −6/17 ( (sin(4)+4cos(4))/e + 4e^(−π/4))Â
. . . . . . . . . . . . . = −0.205938 Â
when you add absolute values of area you get actual distance traveled:Â
∫[0 to Ï€/2] v(t) dt − ∫[Ï€/2 to 2] v(t) dtÂ
= 2.05544 − (−0.205938)Â
= 2.05544 + 0.205938Â
= 2.261378Â
sin(pi)<0, try t=pi/2,Â
3e^(-pi/4)sin(pi)= 0, so the interval 0 to pi/2 the particle travels forward [0,pi/2), then it goes negative for the rest of the interval (pi/2,2) and travels backward.Â
total distance = |integral 0 to pi/2 v(t) dt| + |integral pi/2 to 2 v(t) dt|
∫[0 to Ï€/2] v(t) dt = ∫[0 to Ï€/2] (3 e^(−t/2) sin(2t)) dtÂ
. . . . . . . . . . . . . = ∫[0 to Ï€/2] (3 e^(−t/2) sin(2t)) dtÂ
. . . . . . . . . . . . . = −6/17 e^(−t/2) (sin(2t) + 4cos(2t)) |[0 to Ï€/2]Â
. . . . . . . . . . . . . = −6/17 (e^(−π/4) (sin(Ï€) + 4cos(Ï€)) − e^(0) (sin(0) + 4cos(0)))Â
. . . . . . . . . . . . . = −6/17 (e^(−π/4) (0 − 4) − (0 + 4))Â
. . . . . . . . . . . . . = −6/17 (−4e^(−π/4) − 4)Â
. . . . . . . . . . . . . = 24/17 (e^(−π/4) + 1)Â
. . . . . . . . . . . . . = 2.05544Â
∫[Ï€/2 to 2] v(t) dt = ∫[Ï€/2 to 2] (3 e^(−t/2) sin(2t)) dtÂ
. . . . . . . . . . . . . = ∫[Ï€/2 to 2] (3 e^(−t/2) sin(2t)) dtÂ
. . . . . . . . . . . . . = −6/17 e^(−t/2) (sin(2t) + 4cos(2t)) |[Ï€/2 to 2]Â
. . . . . . . . . . . . . = −6/17 (e^(−1) (sin(4) + 4cos(4)) − e^(−π/4) (sin(Ï€) + 4cos(Ï€)))Â
. . . . . . . . . . . . . = −6/17 ( (sin(4)+4cos(4))/e − e^(−π/4) (0 − 4))Â
. . . . . . . . . . . . . = −6/17 ( (sin(4)+4cos(4))/e + 4e^(−π/4))Â
. . . . . . . . . . . . . = −0.205938 Â
when you add absolute values of area you get actual distance traveled:Â
∫[0 to Ï€/2] v(t) dt − ∫[Ï€/2 to 2] v(t) dtÂ
= 2.05544 − (−0.205938)Â
= 2.05544 + 0.205938Â
= 2.261378Â
The particle travels a total distance of approximately 1.850 meters.
How to calculate the total distance travelled by a particle
The total distance is equal to the following integral formula:
[tex]s = \int\limits^{0.5\pi}_{0} {v(t)} \, dt -\int\limits^{2}_{0.5\pi} {v(t)} \, dt[/tex] (1)
The total distance ([tex]s[/tex]), in meters, represents the absolute value of displacement ([tex]r[/tex]), in meters. Thus, the negative area above the curve must be multiplied by -1.
By part integration we have the following result:
[tex]s = 3\int\limits^{0.5\pi}_0 {e^{-\frac{1}{2}\cdot t }\cdot \sin 2t} \, dx - 3\int\limits^{2}_{0.5\pi} {e^{-\frac{1}{2}\cdot t }\cdot \sin 2t} \, dx[/tex] (1b)
[tex]s \approx 1.850\,m[/tex]
The particle travels a total distance of approximately 1.850 meters. [tex]\blacksquare[/tex]
Remark
A particle travels along a straight line with a velocity of [tex]v(t) = 3\cdot e^{-\frac{t}{2} }\cdot \sin 2t[/tex] meters per second. What is the total distance, in meters, traveled by the particle during the time interval [tex][0, 2][/tex].
To learn more on total distances, we kindly invite to check this verified question: https://brainly.com/question/951637
