Respuesta :
Answer:
0, 6, 10, 12
Step-by-step explanation:
[tex](x+a)(x+b)=x^2+(a+b)x+ab\\a+b=7\\ab=c[/tex]
We can now find potential values for c, knowing what our constraints are.
[tex]c=0,b=7,c=0\\a=1,b=6,c=6\\a=2,b=5,c=10\\a=3,b=4,c=12\\a=4,b=3,c=12\\a=5,b=2,c=10\\a=6,b=1,c=6\\a=7,b=0,c=0[/tex]
We can say that c being 0 is the trivial solution as your expression becomes:
[tex]x^2+7x+0[/tex]
which can be factorised to
[tex]x(x+7)[/tex]
Answer:
Step-by-step explanation:
hello : in R
x² +7x+c factorable when : ∆ ≥ 0
∆= b²-4ac a= 1 and b=7 c =?
∆= 7²-4(1)(c)
49- 4c ≥ 0
49≥ 4c
4c ≤ 49
values could replace C are :
c ≤ 49/4