Given :
The ball's height is given by
[tex]h=5+37t-16t^2\\[/tex]
Step-by-step explanation:
We need to find the value of t when height is 25 feet.
Lets substitute height h by 25 and solve for 't'
[tex]h=5+37t-16t^2\\\\25=5+37t-16t^2\\\\Add \; 16t^2 \; and \; subtract\; 37t \\16t^2-37t+20=0[/tex]
Apply quadratic formula to solve for t
[tex]x=\frac{-b+-\sqrt{b^2-4ac} }{2a} \\t=\frac{37\pm \sqrt{37^2-4\left(16\right)\left(20\right)}}{2\left(16\right)}\\\\t=\frac{37\pm \sqrt{89}}{2\left(16\right)}\\\\t=\frac{37-\sqrt{89}}{32},\:t=\frac{37+\sqrt{89}}{32}\\t=0.86,\:t=1.45[/tex]
Final Answer
The values of t are t=0.86 or t=1.45
Reference : https://brainly.com/question/15810288