Answer: The period of
[tex]f(x) = sin(3x)[/tex] is [tex]2\pi /3[/tex].
Step-by-step explanation:
To find the period of a trigonometric function, we use the formula
[tex]\frac{2\pi }{|b|}[/tex]. In this case, b = 3, so we plug it in:
[tex]\frac{2\pi }{|3|} = \frac{2\pi }{3}[/tex]
Therefore, the period of [tex]f(x) = sin(3x)[/tex] is [tex]2\pi /3[/tex]