1. Which is the best method for solving the quadratic equation? Solve the quadratic equation using the method chosen. Leave all answers in simplest radical form.

Choose each method once.

• Take the square root of each side.

• Factor and use the zero product property.

• Complete the square.

• Use the quadratic formula.

A. x2 = –16x

B. y2 + 6y – 2 = 0

C. 2a2 = 72

D. p2 + 4p = 8


ANSWER:

























2. Consider the quadratic function y = –2x2 + 3x + 4.

A. Does the parabola open upward or downward? Explain.

B. Does the vertex lie on, below, or above the x-axis? Explain.


ANSWER:



















Respuesta :

znk

Answer:

1. A. Factor and use the zero-product property; x = 0, -16

   B. Use the quadratic formula; y=-3-√11, -3+√11

   C. Take the square root of each side; x = -6, 6

   D. Complete the square; p= -2(√3 + 1). 2(√3 - 1)

2. A. Downward; coefficient of x² is negative

    B. Above; k is positive

Step-by-step explanation:

1. A. x² = –16x

Factor and use the zero-product property

[tex]\begin{array}{rcl}x^{2} & = & -16x\\x^{2} + 16x & = & 0\\x(x + 16) & = &0\\x = \mathbf{0} & & x+ 16 = 0\\& & x = \mathbf{-16}\\\end{array}[/tex]

B. y² + 6y – 2 = 0

Use the quadratic formula

a = 1; b = 6; y = -2

[tex]\begin{array}{rcl}y & = & \dfrac{-b\pm\sqrt{b^2-4ac}}{2a} \\\\ & = & \dfrac{-6\pm\sqrt{6^2-4\times1\times(-2)}}{2\times1} \\\\ & = & \dfrac{-6\pm\sqrt{36+8}}{2} \\\\ & = & \dfrac{-6\pm\sqrt{44}}{2} \\\\ & = & \dfrac{-6\pm2\sqrt{11}}{2} \\\\ & = & -3\pm\sqrt{11}\\y=\mathbf{-3-\sqrt{11}} & &y= \mathbf{-3+\sqrt{11}}\\\end{array}[/tex]

C. 2a² = 72

Take the square root of each side.

[tex]\begin{array}{rcl}2a^{2} & = & 72\\a^{2} & = & 36\\a & = & \pm 6\\a= \mathbf{-6} & & a = \mathbf{6}\\\end{array}[/tex]

D. p² + 4p = 8

Complete the square.

[tex]\begin{array}{rcl}p^{2} + 4p & = & 8\\p^{2} + 4p + 4 & = & 12\\(p + 2)^{2}& = & 12\\p + 2& = & \pm \sqrt{12}\\& = & \pm 2\sqrt{3}\\p + 2 = -2\sqrt{3} & & p +2=-2\sqrt{3}\\p = -2 - 2\sqrt{3} & & p = -2 +2\sqrt{3}\\p= \mathbf{-2(\sqrt{3}+1)} & & p= \mathbf{2(\sqrt{3}-1)}\\\end{array}[/tex]

2. y = –2x² + 3x + 4

a = -2; b = 3; c = 4

A. Direction of opening

The parabola opens downward because the coefficient of x² is negative.

B. Vertex

The vertex form of a parabola is

y = a(x - h)² + k

where (h, k) are coordinates of the vertex.

The vertex will be above. on, or below the x-axis if k is positive, zero, or negative.

[tex]\begin{array}{rcl}k& = & \dfrac{4ac-b^{2}}{2a}\\\\& = & \dfrac{4\times(-2) \times 4 - 3^{2}}{2\times4}\\\\& = & \dfrac{-32 - 9}{-8}\\\\& = & \dfrac{-41}{-8}\\\\& > &\mathbf{0}\\\end{array}[/tex]

The vertex is above the x-axis because k is positive.  

The graph below shows that your parabola opens downward and the vertex is above the x-axis.

Ver imagen znk
ACCESS MORE