Answer:
The radius of the duct is [tex]5\frac{15}{88}\ in[/tex] or [tex]5.17\ in[/tex]
Step-by-step explanation:
we know that
At the point of tangency, the tangent to a circle and the radius are perpendicular lines
so
In the right triangle formed
Applying the Pythagorean Theorem
[tex](r+2.75)^2=r^2+6^2[/tex]
Remember that
[tex]2.75\ in=2\frac{3}{4}=\frac{11}{4}\ in[/tex]
substitute
[tex](r+\frac{11}{4})^2=r^2+6^2[/tex]
solve for r
[tex]r^2+\frac{11}{2}r+\frac{121}{16}=r^2+36\\\frac{11}{2}r=36-\frac{121}{16}[/tex]
Multiply by 16 both sides
[tex]88r=576-121\\88r=455\\r=\frac{455}{88}\ in[/tex]
convert to mixed number
[tex]r=\frac{455}{88}\ in=\frac{440}{88}+\frac{15}{88}=5\frac{15}{88}\ in[/tex] ----> exact value
The approximate value is [tex]5.17\ in[/tex]