Answer:
[tex]Amplitude = /\frac{3}{2}/[/tex]
[tex]Range = [\frac{-3}{2} , \frac{3}{2}][/tex]
[tex]Period = \pi[/tex]
Step-by-step explanation:
Given: [tex]y = \frac{3}{2}cos\frac{t}{2}[/tex]
Comparing the equation with the standard form of cosine function :
[tex]y = A cos(Bx- C)[/tex]
where:
[tex]A = Amplitude[/tex]
Formula for calculating Amplitude is given as:
[tex]Amplitude = /A/[/tex]
The formula for calculating Period is given as :
[tex]Period =\frac{2\pi }{B}[/tex]
[tex]B = \frac{1}{2}[/tex]
Therefore , with the comparison
[tex]A = /\frac{3}{2}/[/tex]
which means that:
[tex]Range = \frac{-3}{2} , \frac{3}{2}[/tex]
[tex]Period = \frac{2\pi }{2}[/tex]
[tex]Period = \pi[/tex]