Respuesta :
Answer : The partial pressure of both oxygen and nitrogen is, 61.8 atm and 117.8 atm respectively.
Explanation :
First we have to calculate the moles of [tex]O_2[/tex] and [tex]N_2[/tex]
[tex]\text{Moles of }O_2=\frac{\text{Given mass }O_2}{\text{Molar mass }O_2}=\frac{5.00g}{32g/mol}=0.156mol[/tex]
and,
[tex]\text{Moles of }N_2=\frac{\text{Given mass }N_2}{\text{Molar mass }N_2}=\frac{8.31g}{28g/mol}=0.297mol[/tex]
Now we have to calculate the mole fraction of [tex]O_2[/tex] and [tex]N_2[/tex]
[tex]\text{Mole fraction of }O_2=\frac{\text{Moles of }O_2}{\text{Moles of }O_2+\text{Moles of }N_2}[/tex]
[tex]\text{Mole fraction of }O_2=\frac{0.156}{0.156+0.297}=0.344[/tex]
and,
[tex]\text{Mole fraction of }N_2=\frac{\text{Moles of }N_2}{\text{Moles of }O_2+\text{Moles of }N_2}[/tex]
[tex]\text{Mole fraction of }O_2=\frac{0.297}{0.156+0.297}=0.656[/tex]
Now we have to calculate the partial pressure of both oxygen and nitrogen.
According to the Raoult's law,
[tex]p_i=X_i\times p_T[/tex]
where,
[tex]p_i[/tex] = partial pressure of gas
[tex]p_T[/tex] = total pressure of gas = 179.6 atm
[tex]X_i[/tex] = mole fraction of gas
[tex]p_{O_2}=X_{O_2}\times p_T[/tex]
[tex]p_{O_2}=0.344\times 179.6atm=61.8atm[/tex]
and,
[tex]p_{N_2}=X_{N_2}\times p_T[/tex]
[tex]p_{N_2}=0.656\times 179.6atm=117.8atm[/tex]
Thus, the partial pressure of both oxygen and nitrogen is, 61.8 atm and 117.8 atm respectively.