Answer:
[tex]log(10a)[/tex]
Step-by-step explanation:
[tex]log(a\sqrt{44})+log(a \sqrt275)-log(11a)[/tex]
We can simplify this using these log laws:
[tex]log(a)+log(b)=log(ab)\\log(a)-log(b)=log(\frac{a}{b})[/tex]
[tex]log(\frac{a^2\sqrt{44} \sqrt{275}}{11a})[/tex]
We also have laws to simplify square roots
[tex]\sqrt{a}*\sqrt{b} = \sqrt{ab}[/tex]
So this becomes
[tex]log(\frac{a^2\sqrt{12100}}{11a})[/tex]
[tex]\sqrt{12100} = 110[/tex]
so this becomes
[tex]log(\frac{110a^2}{11a})=log(10a)[/tex]