Respuesta :

Given:

It is given that the measurements of the triangle.

The measure of ∠2 is (3x + 3)°

The measure of ∠3 is (3x - 4)°

The measure of ∠4 is (5x + 8)°

We need to determine the measure of ∠1 and ∠4.

Value of x:

The value of x can be determined using the exterior angle theorem.

Applying the theorem, we have;

[tex]m \angle 4=m \angle 2+m \angle 3[/tex]

Substituting the values, we get;

[tex]5x+8=3x+3+3x-4[/tex]

[tex]5x+8=6x-1[/tex]

[tex]-x+8=-1[/tex]

     [tex]-x=-9[/tex]

        [tex]x=9[/tex]

Thus, the value of x is 9.

Measure of ∠4:

Substituting the value of x in the expression of ∠4, we get;

[tex]m\angle 4=5(9)+8[/tex]

       [tex]=45+8[/tex]

[tex]m\angle 4=53^{\circ}[/tex]

Thus, the measure of ∠4 is 53°

Measure of ∠1:

The angles 1 and 4 are linear pairs and hence these angles add up to 180°

Thus, we have;

[tex]\angle 1+ \angle 4=180^{\circ}[/tex]

Substituting the values, we get;

[tex]\angle 1+ 53^{\circ}=180^{\circ}[/tex]

         [tex]\angle 1=127^{\circ}[/tex]

Thus, the measure of ∠1 is 127°

ACCESS MORE