Use the convolution theorem to find the inverse Laplace transform of the given function. StartFraction 5 Over s cubed (s squared plus 25 )EndFraction 5 s3s2+25 laplace transform Superscript negative 1 Baseline StartSet StartFraction 5 Over s cubed (s squared plus 25 )EndFraction EndSet (t )ℒ−1 5 s3s2+25(t)

Respuesta :

Answer:

[tex]\frac{1}{2}[/tex][tex]t^{2}Sin5t[/tex]

Step-by-step explanation:

using the Convolution theorem to find the inverse of :

     [tex]\frac{5}{s^{3}(s^{2}+25 ) }[/tex]

   [tex]L^{-1}[/tex]  [tex]\frac{5}{s^{3}(s^{2}+25 ) }[/tex] = [tex]\frac{1}{s^{3} }[/tex] × [tex]\frac{5}{s^{2}+25}[/tex]

we know from derivation that

Sin(at) =  [tex]\frac{a}{s^{2}+a^{2} }[/tex]

Hence: [tex]\frac{5}{s^{2}+25}[/tex]  = Sin5t

Also:  [tex]L^{-1}[/tex] [tex]\frac{n!}{s^{n+1} }[/tex] = [tex]t^{n}[/tex]

     [tex]L^{-1}[/tex]  [tex]\frac{1}{s^{3} }[/tex] = [tex]\frac{1}{2}[/tex] [tex]L^{-1}[/tex] ([tex]\frac{2!}{s^{3} }[/tex])

 = [tex]\frac{1}{2}[/tex][tex]t^{2}[/tex]

therefore [tex]L^{-1}[/tex]  [tex]\frac{5}{s^{3}(s^{2}+25 ) }[/tex] = [tex]\frac{1}{2}[/tex][tex]t^{2}Sin5t[/tex]

ACCESS MORE