Answer:
(a) The population after 15 years is 2678.
(b)Therefore the population P(t) at any time t>0 is
[tex]P(t)= 45t+30 {t^{\frac32}}+260[/tex]
Step-by-step explanation:
Given that,
The population grew at a rate of
[tex]P'(t)=45(1+\sqrt t)[/tex]
Integrating both sides
[tex]\int P'(t) dt=\int 45(1+\sqrt t)dt[/tex]
[tex]\Rightarrow \int P'(t) dt=\int (45+45\sqrt t)dt[/tex]
[tex]\Rightarrow \int P'(t) dt=\int 45\ dt+\int 45\sqrt t\ dt[/tex]
[tex]\Rightarrow P(t)= 45t+45\ \frac{t^{\frac12+1}}{\frac12+1}+c[/tex] [ c is integration constant]
[tex]\Rightarrow P(t)= 45t+45\ \frac{t^{\frac32}}{\frac32}+c[/tex]
[tex]\Rightarrow P(t)= 45t+45\times\frac 23 \times {t^{\frac32}}+c[/tex]
[tex]\Rightarrow P(t)= 45t+30 {t^{\frac32}}+c[/tex]
When t=0 , P(0)= 260
[tex]\therefore 260= 45\times0+30\times {0^{\frac32}}+c[/tex]
[tex]\Rightarrow c=260[/tex]
[tex]\therefore P(t)= 45t+30 {t^{\frac32}}+260[/tex]
Therefore the population P(t) at any time t>0 is
[tex]P(t)= 45t+30 {t^{\frac32}}+260[/tex]
To find the population after 15 years, we need to plug t=15 in the above expression.
[tex]P(15)=( 45\times 15)+30( {15^{\frac32}})+260[/tex]
≈2678
The population after 15 years is 2678.