Respuesta :
Answer:
[tex]\\ \omega = 5033.22 \ rpm[/tex]
Explanation:
Given that:
[tex]R_1 = 0.6\\\\R_2 = 0.95\\\\\omega_1 = 4000 \ rpm\\\\\omega_2 = ???\\\\Q_1 = 12\ l/min\\\\Q_2 = 12\ l/min[/tex]
For a continuous centrifuge ; solid recovery R ∝ [tex]\frac{\omega^2}{Q}[/tex]
where;
ω = angular velocity of the centrifuge in rpm
Q = flow rate
SO;
[tex]R_1 \alpha \frac{4000^2}{12}[/tex]
[tex]R_2 \alpha \frac{\omega^2}{12}[/tex]
[tex]\frac{R_1}{R_2} = \frac{4000^2}{12}[/tex] ÷ [tex]\frac{\omega^2 }{12}[/tex]
[tex]\frac{R_1}{R_2} = \frac{4000^2}{12} * \frac{12}{\omega^2}[/tex]
[tex]\frac{R_1}{R_2} = \frac{4000^2}{\omega^2}\\\\\frac{0.6}{0.95} = \frac{4000^2}{\omega^2}[/tex]
[tex]{\omega^2} = \frac{4000^2*0.95}{0.6}\\\\\\{\omega} = \sqrt{ \frac{4000^2*0.95}{0.6}}\\\\\\ \omega = 5033.22 \ rpm[/tex]
The rotational speed when the recovery of cells is increased to 95% at the same flow rate is; ω₂ = 5033.22 rpm
We are given;
Flow rate; Q₁' = Q'₂ = 12 l/min
Rotational speed 1; ω₁ = 4000 rpm
Recovery 1; R₁ = 60% = 0.6
Recovery 2; R₂ = 95% = 0.95
Now, the formula for recovery of tubular centrifuge is;
R = kω²/Q'
where k is a constant of proportionality
For R₁, we have;
0.6 = k * 4000²/12
k = (0.6 * 12)/4000²
When R₂ is 0.95, we have;
0.95 = ((0.6 * 12)/4000²) * ω₂²/Q₂'
⇒ 0.95 = ((0.6 * 12)/4000²) * ω₂²/12
0.95 * 4000²/0.6 = ω₂²
ω₂² = 25,333,333.33
ω₂ = √25,333,333.33
ω₂ = 5033.22 rpm
Read more about centrifuge at; https://brainly.com/question/10472461