Marty is asked to draw triangles with side lengths of 4 units and 2 units, and a non-included angle of 30°. Select all the triangles that he could have drawn. *

Respuesta :

Answer:

The drawn in the attached figure

see the explanation

Step-by-step explanation:

First case

In the triangle ABC

Let

[tex]a=4\ units\\b=2/ units\\B=30^o[/tex]

Applying the law of sines

Find the measure of angle A

[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]

substitute the given values

[tex]\frac{4}{sin(A)}=\frac{2}{sin(30^o)}[/tex]

[tex]sin(A)=1[/tex]

so

[tex]A=90^o[/tex]

Find the measure of angle C

In a right triangle

we know that

[tex]B+C=90^o[/tex] ----> by complementary angles

[tex]B=30^o[/tex]

therefore

[tex]C=60^o[/tex]

Find the length side c

Applying the law of sines

[tex]\frac{c}{sin(C)}=\frac{b}{sin(B)}[/tex]

substitute the given values

[tex]\frac{c}{sin(60^o)}=\frac{2}{sin(30^o)}[/tex]

[tex]c=2\sqrt{3}\ units[/tex]

therefore

The dimensions of the triangle are

[tex]A=90^o[/tex]

[tex]B=30^o[/tex]

[tex]C=60^o[/tex]

[tex]a=4\ units\\b=2\ units\\c=2\sqrt{3}=3.46\ units[/tex]

Second case

In the triangle ABC

Let

[tex]a=4\ units\\b=2/ units\\A=30^o[/tex]

Applying the law of sines

Find the measure of angle B

[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]

substitute the given values

[tex]\frac{4}{sin(30^o)}=\frac{2}{sin(B)}[/tex]

[tex]sin(B)=0.25[/tex]

so

using a calculator

[tex]B=14.48^o[/tex]

Find the measure of angle C

we know that

The sum of the interior angles in any triangle must be equal to 180 degrees

so

[tex]A+B+C=180^o[/tex]

[tex]A=30^o\\B=14.48^o[/tex]

therefore

[tex]30^o+14.48^o+C=180^o[/tex]

[tex]C=135.52^o[/tex]

Find the length side c

Applying the law of sines

[tex]\frac{c}{sin(C)}=\frac{a}{sin(A)}[/tex]

substitute the given values

[tex]\frac{c}{sin(135.52^o)}=\frac{4}{sin(30^o)}[/tex]

[tex]c=5.61\ units[/tex]

therefore

The dimensions of the triangle are

[tex]A=30^o[/tex]

[tex]B=14.48^o[/tex]

[tex]C=135.52^o[/tex]

[tex]a=4\ units\\b=2\ units\\c=5.61\ units[/tex]

see the attached figure to better understand the problem

Ver imagen calculista
ACCESS MORE