Respuesta :
Answer:
The drawn in the attached figure
see the explanation
Step-by-step explanation:
First case
In the triangle ABC
Let
[tex]a=4\ units\\b=2/ units\\B=30^o[/tex]
Applying the law of sines
Find the measure of angle A
[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]
substitute the given values
[tex]\frac{4}{sin(A)}=\frac{2}{sin(30^o)}[/tex]
[tex]sin(A)=1[/tex]
so
[tex]A=90^o[/tex]
Find the measure of angle C
In a right triangle
we know that
[tex]B+C=90^o[/tex] ----> by complementary angles
[tex]B=30^o[/tex]
therefore
[tex]C=60^o[/tex]
Find the length side c
Applying the law of sines
[tex]\frac{c}{sin(C)}=\frac{b}{sin(B)}[/tex]
substitute the given values
[tex]\frac{c}{sin(60^o)}=\frac{2}{sin(30^o)}[/tex]
[tex]c=2\sqrt{3}\ units[/tex]
therefore
The dimensions of the triangle are
[tex]A=90^o[/tex]
[tex]B=30^o[/tex]
[tex]C=60^o[/tex]
[tex]a=4\ units\\b=2\ units\\c=2\sqrt{3}=3.46\ units[/tex]
Second case
In the triangle ABC
Let
[tex]a=4\ units\\b=2/ units\\A=30^o[/tex]
Applying the law of sines
Find the measure of angle B
[tex]\frac{a}{sin(A)}=\frac{b}{sin(B)}[/tex]
substitute the given values
[tex]\frac{4}{sin(30^o)}=\frac{2}{sin(B)}[/tex]
[tex]sin(B)=0.25[/tex]
so
using a calculator
[tex]B=14.48^o[/tex]
Find the measure of angle C
we know that
The sum of the interior angles in any triangle must be equal to 180 degrees
so
[tex]A+B+C=180^o[/tex]
[tex]A=30^o\\B=14.48^o[/tex]
therefore
[tex]30^o+14.48^o+C=180^o[/tex]
[tex]C=135.52^o[/tex]
Find the length side c
Applying the law of sines
[tex]\frac{c}{sin(C)}=\frac{a}{sin(A)}[/tex]
substitute the given values
[tex]\frac{c}{sin(135.52^o)}=\frac{4}{sin(30^o)}[/tex]
[tex]c=5.61\ units[/tex]
therefore
The dimensions of the triangle are
[tex]A=30^o[/tex]
[tex]B=14.48^o[/tex]
[tex]C=135.52^o[/tex]
[tex]a=4\ units\\b=2\ units\\c=5.61\ units[/tex]
see the attached figure to better understand the problem
![Ver imagen calculista](https://us-static.z-dn.net/files/d63/09b6cff471abf374f7856d95611da0ce.jpg)