Respuesta :
Answer:
The steady state solution is [tex]x(t) = \frac{33}{157} cos(5t) + \frac{198}{157} sin(5t)[/tex]
Step-by-step explanation:
From the the question we are told that
The mass is [tex]m = 32lb = \frac{32* lb}{32* \frac{ft}{s^2} } = 1 slug[/tex]
The force applied is [tex]F(t) = 3 cos 5t[/tex]
The spring constant is [tex]k = 15 lb/ft[/tex]
The damping constant is [tex]b = 3lb-sec/ft[/tex]
The acceleration due to gravity is [tex]g = 32 ft/sec^2[/tex]
Generally the model differential equation for the motion of the mass attached to a string is mathematically represented as
[tex]F(t) = m\frac{d^2 x}{dt} + b\frac{dx}{dt} + kx[/tex]
Substituting values
[tex]F(t) = 1 \frac{d^2x}{dt^2} + 3\frac{dx}{dt} + 15x[/tex]
Substituting given value for F(t)
[tex]3cos5t = \frac{d^2x}{dt^2} + d\frac{dx}{dt} + 15x[/tex]
Applying the method of undermined coefficient in order to obtain the steady state solution
Let
[tex]x(t) = Acos(5t) + Bsin(5t)[/tex] be the steady state solution
it means that
[tex]x' (t) = -2A sin (5t) + 2Bcos (5t)[/tex]
And
[tex]x''(t) = -4Acos (5t) - 4B sin(5t)[/tex]
Now substituting this into the equation
[tex]3cos5t = [-4Acos (5t) - 4B sin(5t)] + 3[-2A sin (5t) + 2Bcos (5t)] + \\\\15[Acos(5t) + Bsin(5t)][/tex]
[tex]3cos 5t = -4Acos (5t) - 4B sin(5t) -6Asin(5t) + 6Bcos(5t)+\\\\ 15Acos(5t) + 15Bsin(5t)[/tex]
[tex]3cos(5t) = -4Acos(5t) + 15Acos(5t) -4Bsin(5t) +15Bsin(5t) \\\\ -6Asin(5t) + 6Bcos(5t)[/tex]
[tex]3cos(5t) = 11Acos(5t) + 11Bsin(5t) -6Asin(5t) + 6Bcos(5t)[/tex]
Comparing coefficients on both sides
Right Hand Side Left Hand Side
Cos (5t) 3 11A + 6B
Sin (5t) 0 11B -6A
From above we have that
[tex]11A + 6B = 3 ---(1)[/tex]
And
[tex]11B - 6A = 0 ---(2)[/tex]
From equation one we see that
[tex]B = \frac{6A}{11} ---(3)[/tex]
Substituting this for B in equation 1
[tex]11A +6 * \frac{6A}{11} = 3[/tex]
[tex]11A + \frac{36A}{11} = 3[/tex]
Multiply through by 11
[tex]121A +36A = 33[/tex]
[tex]157A = 33[/tex]
[tex]A =\frac{33}{157}[/tex]
substituting for A in equation 3
[tex]B = \frac{6 * \frac{33}{157} }{11}[/tex]
[tex]= \frac{\frac{198}{157} }{11}[/tex]
[tex]= \frac{198}{157} * \frac{11}{1}[/tex]
[tex]B = \frac{2178}{157}[/tex]
So the steady state solution is
[tex]x(t) = \frac{33}{157} cos(5t) + \frac{198}{157} sin(5t)[/tex]