Respuesta :

Given:

The given triangle QPO is a right triangle.

The length of QP is 5 units.

The length of OP is (x + 5) units.

The length of QO is (x + 6) units.

We need to determine the hypotenuse of the triangle QPO.

Value of x:

The value of x can be determined using the Pythagorean theorem.

Thus, we have;

[tex]QO^2=QP^2+OP^2[/tex]

Substituting the values, we get;

[tex](x+6)^2=5^2+(x+5)^2[/tex]

Expanding, we get;

[tex]x^2+12x+36=25+x^2+10x+25[/tex]

Adding the like terms, we get;

[tex]x^2+12x+36=x^2+10x+50[/tex]

       [tex]12x+36=10x+50[/tex]

         [tex]2x+36=50[/tex]

                 [tex]2x=14[/tex]

                   [tex]x=7[/tex]

Thus, the value of x is 7.

Length of the hypotenuse:

The hypotenuse of the triangle QPO is QO.

Substituting x = 7 in the length of QO, we get;

[tex]QO=7+6[/tex]

[tex]QO=13[/tex]

Thus, the length of the hypotenuse is 13 units.

Hence, Option D is the correct answer.

ACCESS MORE