HELP! Please pyth. theorem
![HELP Please pyth theorem class=](https://us-static.z-dn.net/files/d5a/c4a57e2a83927a34aa2039f468fdb251.png)
Given:
The given triangle QPO is a right triangle.
The length of QP is 5 units.
The length of OP is (x + 5) units.
The length of QO is (x + 6) units.
We need to determine the hypotenuse of the triangle QPO.
Value of x:
The value of x can be determined using the Pythagorean theorem.
Thus, we have;
[tex]QO^2=QP^2+OP^2[/tex]
Substituting the values, we get;
[tex](x+6)^2=5^2+(x+5)^2[/tex]
Expanding, we get;
[tex]x^2+12x+36=25+x^2+10x+25[/tex]
Adding the like terms, we get;
[tex]x^2+12x+36=x^2+10x+50[/tex]
[tex]12x+36=10x+50[/tex]
[tex]2x+36=50[/tex]
[tex]2x=14[/tex]
[tex]x=7[/tex]
Thus, the value of x is 7.
Length of the hypotenuse:
The hypotenuse of the triangle QPO is QO.
Substituting x = 7 in the length of QO, we get;
[tex]QO=7+6[/tex]
[tex]QO=13[/tex]
Thus, the length of the hypotenuse is 13 units.
Hence, Option D is the correct answer.