Respuesta :
Answer:
a) [tex] Var(X) = \frac{(b-a)^2}{12} = \frac{(1027 -251)^2}{12}= 50181.333[/tex]
And the deviation would be:
[tex] Sd(X) = \sqrt{50181.333}= 224.012[/tex]
b) [tex] h = \frac{1}{b-a} =\frac{1}{1027-251}=0.00129[/tex]
c) [tex] P(X>870) = 1-P(X<870) = 1- \frac{870-251}{1027-251}= 0.2023[/tex]
d) [tex] P(X>1290) = 1-P(X<1290) = 1- \frac{1027-251}{1027-251}= 0[/tex]
e) [tex] P(380<X<490) = P(X<490)-P(X<380) = \frac{490-251}{1027-251}- \frac{380-251}{1027-251}= 0.3080-0.1662= 0.1418[/tex]
Step-by-step explanation:
For this case we define the random variable X as "American household spend" and we know that the distribution for X is given by:
[tex] X \sim Unif (a=251, b =1027)[/tex]
Part a
We can calculate the variance first with this formula:
[tex] Var(X) = \frac{(b-a)^2}{12} = \frac{(1027 -251)^2}{12}= 50181.333[/tex]
And the deviation would be:
[tex] Sd(X) = \sqrt{50181.333}= 224.012[/tex]
Part b
For this case the height represent the individual probability for any value in the interval and is given by:
[tex] h = \frac{1}{b-a} =\frac{1}{1027-251}=0.00129[/tex]
Part c
For this case we can use the cumulative distribution function given by:
[tex] F(x) = \frac{x-a}{b-a} , a \leq X \leq b[/tex]
We want this probability:
[tex] P(X>870) = 1-P(X<870) = 1- \frac{870-251}{1027-251}= 0.2023[/tex]
Part d
For this case we can use the cumulative distribution function given by:
[tex] F(x) = \frac{x-a}{b-a} , a \leq X \leq b[/tex]
We want this probability:
[tex] P(X>1290) = 1-P(X<1290) = 1- \frac{1027-251}{1027-251}= 0[/tex]
Part e
We want this probability:
[tex] P(380<X<490) = P(X<490)-P(X<380) = \frac{490-251}{1027-251}- \frac{380-251}{1027-251}= 0.3080-0.1662= 0.1418[/tex]