Respuesta :

Given:

Given that ABC is a right triangle.

The length of AB is 7 units.

The measure of ∠A is 65°

We need to determine the length of AC

Length of AC:

The length of AC can be determined using the trigonometric ratio.

Thus, we have;

[tex]cos \ \theta=\frac{adj}{hyp}[/tex]

Where the value of [tex]\theta[/tex] is 65° and the side adjacent to the angle is AC and the side hypotenuse to the angle is AB.

Substituting the values, we have;

[tex]cos \ 65^{\circ}=\frac{AC}{AB}[/tex]

Substituting AB = 7, we have;

[tex]cos \ 65^{\circ}=\frac{AC}{7}[/tex]

Multiplying both sides by 7, we get;

[tex]cos \ 65^{\circ} \times 7=AC[/tex]

  [tex]0.423 \times 7=AC[/tex]

        [tex]2.961=AC[/tex]

Rounding off to the nearest hundredth, we get;

[tex]2.96=AC[/tex]

Thus, the length of AC is 2.96 units.

ACCESS MORE