Respuesta :

Space

Answer:

[tex]\displaystyle P_{\triangle ABC} \approx 22.7[/tex]

General Formulas and Concepts:

Pre-Algebra

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

Algebra I

Coordinate Planes

  • Coordinates (x, y)

Geometry

Perimeter of a Triangle Formula: P = s₁ + s₂ + s₃

  • s₁ is one side
  • s₂ is 2nd side
  • s₃ is 3rd side

Algebra II

Distance Formula: [tex]\displaystyle d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]

Step-by-step explanation:

Step 1: Define

Identify.

Vertice A(-3, 4)

Vertice B(4, 4)

Vertice C(1, -3)

Step 2: Find Side Lengths

Simply plug in the 2 coordinates into the distance formula to find distance d.

  1. [Side AB] Substitute in points [Distance Formula]:                                    [tex]\displaystyle \overline{AB} = \sqrt{(4 - -3)^2 + (4 - 4)^2}[/tex]
  2. [Side AB] Evaluate [Order of Operations]:                                                  [tex]\displaystyle \overline{AB} = 7[/tex]
  3. [Side BC] Substitute in points [Distance Formula]:                                    [tex]\displaystyle \overline{BC} = \sqrt{(1 - 4)^2 + (-3 - 4)^2}[/tex]
  4. [Side BC] Evaluate [Order of Operations]:                                                  [tex]\displaystyle \overline{BC} = \sqrt{58}[/tex]
  5. [Side AC] Substitute in points [Distance Formula]:                                    [tex]\displaystyle \overline{AC} = \sqrt{(1 - -3)^2 + (-3 - 4)^2}[/tex]
  6. [Side AC] Evaluate [Order of Operations]:                                                  [tex]\displaystyle \overline{AC} = \sqrt{65}[/tex]

Step 3: Find Perimeter

  1. Define sides:                                                                                                [tex]\displaystyle s_1 = \overline{AB} ,\ s_2 = \overline{BC} ,\ s_3 = \overline{AC}[/tex]
  2. Substitute in variables [Perimeter of a Triangle Formula]:                        [tex]\displaystyle P_{\triangle ABC} = \overline{AB} + \overline{BC} + \overline{AC}[/tex]
  3. Substitute in values:                                                                                     [tex]\displaystyle P_{\triangle ABC} = 7 + \sqrt{58} + \sqrt{65}[/tex]
  4. Simplify:                                                                                                        [tex]\displaystyle P_{\triangle ABC} \approx 22.7[/tex]
ACCESS MORE