Respuesta :
Answer:
[tex]\displaystyle P_{\triangle ABC} \approx 22.7[/tex]
General Formulas and Concepts:
Pre-Algebra
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
- Left to Right
Algebra I
Coordinate Planes
- Coordinates (x, y)
Geometry
Perimeter of a Triangle Formula: P = s₁ + s₂ + s₃
- s₁ is one side
- s₂ is 2nd side
- s₃ is 3rd side
Algebra II
Distance Formula: [tex]\displaystyle d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}[/tex]
Step-by-step explanation:
Step 1: Define
Identify.
Vertice A(-3, 4)
Vertice B(4, 4)
Vertice C(1, -3)
Step 2: Find Side Lengths
Simply plug in the 2 coordinates into the distance formula to find distance d.
- [Side AB] Substitute in points [Distance Formula]: [tex]\displaystyle \overline{AB} = \sqrt{(4 - -3)^2 + (4 - 4)^2}[/tex]
- [Side AB] Evaluate [Order of Operations]: [tex]\displaystyle \overline{AB} = 7[/tex]
- [Side BC] Substitute in points [Distance Formula]: [tex]\displaystyle \overline{BC} = \sqrt{(1 - 4)^2 + (-3 - 4)^2}[/tex]
- [Side BC] Evaluate [Order of Operations]: [tex]\displaystyle \overline{BC} = \sqrt{58}[/tex]
- [Side AC] Substitute in points [Distance Formula]: [tex]\displaystyle \overline{AC} = \sqrt{(1 - -3)^2 + (-3 - 4)^2}[/tex]
- [Side AC] Evaluate [Order of Operations]: [tex]\displaystyle \overline{AC} = \sqrt{65}[/tex]
Step 3: Find Perimeter
- Define sides: [tex]\displaystyle s_1 = \overline{AB} ,\ s_2 = \overline{BC} ,\ s_3 = \overline{AC}[/tex]
- Substitute in variables [Perimeter of a Triangle Formula]: [tex]\displaystyle P_{\triangle ABC} = \overline{AB} + \overline{BC} + \overline{AC}[/tex]
- Substitute in values: [tex]\displaystyle P_{\triangle ABC} = 7 + \sqrt{58} + \sqrt{65}[/tex]
- Simplify: [tex]\displaystyle P_{\triangle ABC} \approx 22.7[/tex]