Respuesta :

Domain:  

x  ∈ R  or  x ∣ ( − ∞ ,

Range :  y ≥ 1  or  y ∣ [ 1 , ∞ ) .

Step-by-step explanation:

y

=

x

2

+

1

 , Domain : Possible input value of  

x

is

any real value . Therefore Domain:  

x

R

or

x

(

,

)

.

Range:  

y

=

x

2

+

1

or

y

=

(

x

0

)

2

+

1

. Comparing with vertex

form of equation  

f

(

x

)

=

a

(

x

h

)

2

+

k

;

(

h

,

k

)

being vertex

we find here  

h

=

0

,

k

=

1

,

a

=

1

Vertex is at  

(

0

,

1

)

Since  

a

is positive the parabola opens upward and

vertex is the minimum point  

x

=

0

,

y

=

1

So range is  

y

1

or

y

[

1

,

)

.

Domain:  

x

R

or

x

(

,

)

Range :  

y

1

or

y

[

1

,

)

.

graph{x^2+1 [-10, 10, -5, 5]}

ACCESS MORE